Olhando para a natureza com os olhos de um engenheiro

Imagem: Patella vulgata (no link do texto original)

Aqui vão dois exemplos de pesquisadores que procuram por “princípios de design” em organismos vivos, mostrando que a visão de engenharia leva ao progresso científico.

Replicação celular como Engenharia de Sistemas

O trabalho de um especialista em eficiência é encontrar melhores formas de fazer mais coisas em menos tempo com menos custos. Do “Taylorismo” no início do século 20, até a “Pesquisa Operacional” nos dias da 2ª Guerra Mundial, à “Engenharia de Sistemas” hoje, a especialização em eficiência tem se tornado uma disciplina essencial para a produção e para o cronograma de projeto. Recentemente, Rami Pugatch, um biólogo de sistemas no Instituto de Estudos Avançados de Princeton, olhou para a humilde bactéria de laboratório E. coli com os olhos de um especialista em eficiência. O site PhysOrg explica como ele abordou a “replicação celular como um problema de engenharia de sistemas”:

O artigo descreve o problema do agendamento de tarefas em processos de replicação celular e, finalmente, mostra uma distribuição matemática que caracteriza uma estratégia ótima de replicação para células de E. coli. O escopo do trabalho de Pugatch engloba processos celulares individuais, descrições algorítmicas de replicação otimizada, conceitos de engenharia de sistemas, e até mesmo a história do conceito de máquina auto-replicante. [grifos nossos]

A história se refere ao trabalho teórico de John von Neumann em 1948 sobre como construir uma máquina auto-replicante. Pugatch descobre que uma bactéria replicante atende a alguns requisitos: ela mantém todos os ingredientes em reservatórios bem abastecidos para cada tarefa, ela escalona as tarefas da melhor maneira, e duplica as instruções, como parte do trabalho. A bactéria consegue bem suceder mesmo quando os recursos são escassos, um “problema de escalonamento difícil de resolver” de acordo com o artigo publicado no PNAS.

Auto-replicação bacteriana é um processo complexo composto de diversas etapas de síntese, catalisadas por uma miríade de unidades moleculares de processamento, por exemplo, as máquinas de transcrição e tradução, enzimas metabólicas e o replissoma. A conclusão bem sucedida de todas as tarefas de produção requer um escalonamento – uma atribuição temporal, de cada uma das tarefas produtivas para as suas respectivas unidades de processamento, que respeita a ordenação e a limitação de recursos. A maioria dos processos de crescimento intracelular estão bem caracterizados. Contudo, a maneira pela qual elas são coordenadas sob o controle de uma política de escalonamento não é bem compreendida. Quando a replicação rápida é priorizada, um escalonamento que minimizasse o tempo de conclusão é desejável. No entanto, se os recursos são escassos, normalmente é difícil encontrar computacionalmente um escalonamento tal, no pior dos casos. Aqui, nós mostramos que o escalonamento ideal emerge naturalmente na auto-replicação celular. Um tempo de duplicação ótimo é obtido através da manutenção de um inventário suficientemente grande de metabólitos intermediários e de unidades de processamento necessárias para a auto-replicação e, adicionalmente, da exigência de que essas unidades de processamento sejam “gananciosas”, ou seja, não fiquem ociosas se elas puderem executar uma tarefa produtiva. Calculamos a distribuição dos tempos de duplicação dessas máquinas auto-replicantes de escalonamento ótimo, e descobrimos que existe uma forma universal – log-Frechet, que não é sensível a muitos detalhes microscópicos. Analisando dois conjuntos de dados recentes de Escherichia coli que cresciam em um ambiente estacionário, encontramos uma excelente concordância entre a distribuição do tempo de duplicação observado e a distribuição universal prevista, sugerindo que a E. coli está escalonando a sua replicação de maneira ótima.

O artigo não faz nenhuma menção a evolução ou a seleção natural, nem mesmo o sumário do PhysOrg. Em vez disso, encontra-se a linguagem da PERT (Program Evaluation and Review Technique), “caminho crítico” e outros termos familiares para engenheiros de sistemas.

Quando von Neumann propôs a máquina auto-replicante, era uma ideia futurista a que escritores de ficção científica se prenderam, prevendo robôs que viajavam pelo espaço que poderiam se replicar com recursos encontrados nos planetas que pousaram, enquanto eles se espalhavam por toda a galáxia. Mas aqui mesmo na Terra, temos um exemplo perfeito em um dos menores e “mais simples” organismos vivos.

Surpreendentemente, a nossa análise dos conjuntos de dados medidos recentemente da E. coli em crescimento exponencial num ambiente estacionário revela que a distribuição medida dos tempos de duplicação se encaixa bem com a distribuição prevista dos tempos de duplicação de uma máquina auto-replicante de escalonamento ótimo. [PNAS]

Tal máquina [de von Neumann] é chamada de “não-trivial” se ela inclui um construtor universal como um componente. O processo de duplicação não é considerado completo até que uma cópia das instruções seja fornecida. Em vez de controlar sua própria replicação, as instruções são duplicadas a partir de um modelo por uma máquina dedicada separada, que não é acionada até a conclusão da fase de replicação da máquina. Isso é muito análogo a processos celulares reais. [PhysOrg]

Foram necessários olhos de engenheiro para enxergar esta conexão. Agora, a nossa compreensão da replicação bacteriana foi consequentemente enriquecida, sem qualquer menção a seleção natural. Na verdade, o desenrolar do processo cria novos problemas para o neodarwinismo: como uma máquina de von Neumann auto-replicante conseguiria aparecer pouco a pouco, sem que todas as peças, instruções e o “construtor universal” já estivessem presentes?

Ciência dos materiais

Enquanto isso, a substância biológica mais forte conhecida veio à tona. Esse material pode suportar 5 gigapascals de tensão, o que equivale a uma corda da largura de um espaguete suportando 3.000 sacos de meio-quilo de açúcar, de acordo com a BBC News. Que material é esse? É a rádula, ou dente, da lapa, um animal aquático parecido com um caracol com uma concha em espiral. E quem o encontrou? Um engenheiro. A Universidade de Portsmouth explica:

O professor Asa Barber da escola de engenharia da universidade liderou o estudo. Ele disse: “A natureza é uma fonte de inspiração maravilhosa para estruturas que têm propriedades mecânicas excelentes. Todas as coisas que observamos ao nosso redor, como as árvores, as conchas de criaturas do mar e os dentes de lapa estudados neste trabalho, têm evoluído para serem eficazes no que fazem.

“Até então nós pensávamos que a seda de aranha era o material biológico mais forte por causa da sua superforça e das suas potenciais aplicações em tudo, de coletes à prova de bala até à eletrônica computacional, mas agora nós descobrimos que os dentes de lapa apresentam uma força que é potencialmente maior”.

Ahá! O darwinista diria. Está vendo? Barber disse que eles “evoluíram para serem eficazes no que fazem”. Ao ler a matéria, porém, percebe-se que a teoria da evolução não tem nada a ver com a descoberta. Era nada mais do que uma historinha que o professor contou provavelmente por força do hábito. Ele é um engenheiro, afinal de contas, que reconhece um bom design quando ele vê:

“Essa descoberta significa que as estruturas fibrosas encontradas nos dentes da lapa poderiam ser imitadas e usadas em aplicações de engenharia de alto desempenho, tais como em carros de Formula 1, em cascos de embarcações e estruturas de aeronaves”.

Os engenheiros estão sempre interessados em tornar essas estruturas mais fortes para melhorarem o seu desempenho ou mais leves para que elas usem menos material”.

O trabalho de Barber envolveu testes de resistência à tração dos dentes de lapa com instrumentos especialmente concebidos. Foi um trabalho difícil. Os dentes tem apenas um milímetro de comprimento, e são muito finos. A lapa usa sua rádula para raspar as algas das rochas de que se alimenta. A equipe de Barber descobriu que, por causa do modo que os dentes são construídos com um mineral chamado goetita, suas propriedades se escalariam, ou seja, os mesmos princípios seriam aplicáveis com tamanhos maiores, uma vez que a resistência do material não depende do tamanho.

A descoberta de projetos eficazes na natureza e, em seguida, construir estruturas com base nesses projetos, é chamada de ‘bioinspiração’.

O professor Barber disse: “A biologia é uma grande fonte de inspiração para a concepção de novas estruturas, mas com tantas estruturas biológicas para considerar, pode-se levar tempo para descobrir o que pode ser útil”.

Bioinspiração – um neologismo que há de se manter. Pense nas perspectivas de encontrar mais designs por aí! Como o artigo da BBC News disse: “Nós deveríamos estar pensando em construir nossas próprias estruturas seguindo os mesmos princípios de design“. Boa idéia! O design é uma inspiração para explorar, descobrir, compreender, e então imitar.

Texto traduzido e adaptado de ENV.

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s