Arquivo da tag: Academia Nacional de Ciências dos EUA

National Academy of Sciences

Problema 10: A longa história de previsões imprecisas do neo-darwinismo sobre órgãos vestigiais e o DNA lixo

Nota do tradutor: esta é a parte 10 da série de 10 artigos sobre os problemas científicos da evolução biológica e química. A série é baseada no capítulo “The Top Ten Scientific Problems with Biological and Chemical Evolution” de autoria de Casey Luskin no livro More than Myth, editado por Paul Brown e Robert Stackpole (Chartwell Press, 2014). Eis a lista de todos os artigos: Artigo introdutório, Problema 1, Problema 2, Problema 3, Problema 4, Problema 5, Problema 6, Problema 7, Problema 8, Problema 9, Problema 10.


Durante décadas, os evolucionistas afirmavam que os nossos corpos e os nossos genomas estão cheios de partes inúteis e de material genético inútil — os chamados órgãos “vestigiais” –, mostrando que a vida é resultado de longos períodos de tempo de evolução não controlada. Durante o julgamento de Scopes em 1925, o biólogo evolucionista Horatio Hackett Newman argumentou que existem mais de 180 órgãos vestigiais e estruturas do corpo humano, “suficiente para fazer de um homem um verdadeiro museu vivo de antiguidades” [157].

Ao longo do tempo, no entanto, essas previsões sobre órgãos vestigiais do corpo e sobre DNA inútil não permaneceram verdadeiras. Enquanto os cientistas aprendem mais e mais sobre o funcionamento da biologia, importantes funções e propósitos foram descobertos para essas chamadas estruturas vestigiais. De fato, em 2008, a revista New Scientist relatou que, desde os dias do professor Newman, a lista de órgãos vestigiais “cresceu, e então encolheu novamente” a tal ponto que hoje “os biólogos estão extremamente cautelosos em falar de órgãos vestigiais em tudo” [158]. Estruturas que antes eram incorretamente consideradas vestigiais incluem:

  • As amígdalas: Em algum momento, elas eram removidas com frequência. Agora sabe-se que elas servem a um propósito no sistema linfático para ajudar a combater a infecção [159].
  • O cóccix: Muitos evolucionistas ainda afirmam que este é um remanescente das caudas dos nossos supostos ancestrais primatas [160], mas na verdade é uma parte vital do nosso esqueleto, usada para a fixação de músculos, tendões e ligamentos que suportam os ossos nas nossas pélvis.
  • A tireóide: Acreditou-se uma vez que esta glândula no pescoço não tinha nenhum propósito, e foi ignorada e mesmo destruída por médicos que operam sob falsas premissas darwinianas. Agora os cientistas sabem que ela é vital para a regulação do metabolismo.
  • O apêndice: cientistas darwinistas afirmavam que o apêndice era um “vestígio da nossa ancestralidade herbívora” [161], e que, ao longo das eras evolutivas, a sua função nos seres humanos tem diminuído e está sendo perdida. Mas hoje é sabido que o apêndice desempenha funções importantes, tais como providenciar um armazém de bactérias benéficas, produzindo células brancas do sangue, e desempenhando papéis importantes durante o desenvolvimento fetal [162]. À luz desta evidência, o imunologista William Parker, da Universidade de Duke, observou que “muitos textos de biologia ainda hoje se referem ao apêndice como um órgão vestigial”, mas que “é hora de corrigir os livros didáticos” [163].

Apesar da má reputação das afirmações de que os órgãos eram vestigiais, biólogos evolucionistas tem aplicado esse mesmo tipo de pensamento nos nossos genomas. Muitos postularam que a natureza aleatória das mutações iria encher nossos genomas com lixo genético inútil, apelidado de “DNA lixo”. Esta hipótese foi aparentemente confirmada quando foi descoberto que apenas 2% do genoma humano era codificado por proteínas, deixando os outros 98% sem explicação. Muitos cientistas que atuam como porta-vozes da biologia evolutiva tem afirmado que esta evidência dá evidências conclusivas da evolução darwiniana:

  • O biólogo evolucionista Kenneth Miller da Brown University argumenta que “o genoma humano está repleto de pseudogenes, fragmentos de genes, os genes ‘órfãos’, DNA lixo, e tantas cópias repetidas de sequências de DNA sem sentido que isso não pode ser atribuído a qualquer coisa que pareça ter sido projeto inteligente” [164].
  • Richard Dawkins igualmente escreve que “os criacionistas podem passar um bom tempo especulando sobre por que o Criador bagunçou nos genomas colocando pseudogenes não traduzidos e repetidos DNA lixo lado a lado” [165].
  • Em seu livro de 2006 The Language of God, Francis Collins alegou que por volta de “45 por cento do genoma humano” é constituído por “flotsam e jetsam genéticos” [166] (Flotsam e jetsam, é claro, é lixo flutuante no oceano). Soando muito parecido com Dawkins, ele faz implicações claras: “A menos que alguém esteja disposto a assumir a posição de que Deus colocou [DNA repetitivo e compartilhado sem função] nessas posições precisas para confundir e nos enganar, a conclusão de um ancestral comum para os seres humanos e ratos é praticamente inevitável” [167].

O problema com esses argumentos não é teológico, mas sim científico: Vários exemplos de funções foram descobertas para o chamado DNA lixo.

O biólogo Richard Sternberg examinou a literatura e encontrou várias evidências de funções para o DNA repetitivo. Escrevendo na revista Annals of a New York Academy of Sciences, ele descobriu que, entre as funções das repetições, inclui-se a formação de estruturas nucleares de ordem superior, centrômeros, telômeros e centros de nucleação para a metilação do DNA. Descobriu-se que o DNA repetitivo estava envolvido na proliferação de células, nas respostas ao stress celular, na tradução de genes e no reparo de DNA [168]. Sternberg concluiu que “a narrativa do DNA [lixo] egoísta e histórias associadas deveriam se juntar aos outros ‘ícones’ da teoria da evolução neo-darwinista que, apesar do seu desacordo com as evidências empíricas, no entanto, persistem na literatura” [169].

Outras pesquisas continuam a descobrir funções para vários tipos de DNA repetitivo, incluindo SINE [170], LINE [171], e elementos Alu [172]. Um artigo chegou a sugerir que sequências Alu repetitivas podem estar envolvidas no “desenvolvimento da função cerebral superior” em humanos [173]. Numerosas outras funções foram descobertas para vários tipos de DNA não-codificante de proteínas, incluindo:

  • reparo de DNA [174];
  • auxilio na replicação de DNA [175];
  • regulação de transcrição do DNA [176];
  • auxílio no dobramento e na manutenção de cromossomos [177];
  • controle da edição e do entrelaçamento de RNA [178];
  • ajuda no combate de doenças [179];
  • regulação do desenvolvimento embrionário [180];

Sternberg, juntamente com o geneticista da Universidade de Chicago James Shapiro, previu em 2005 no periódico Cytogenetic and Genome Research que “um dia, iremos pensar naquilo que costumava ser chamado de ‘DNA lixo’ como sendo um componente essencial de um verdadeiro regime de controle celular” [181].

O dia previsto por Sternberg e Shapiro talvez tenha vindo mais cedo do que eles esperavam. Em setembro de 2012, a revista Nature relatou os resultados de um projeto de pesquisa de muitos anos, envolvendo mais de 400 cientistas internacionais que estudavam as funções do DNA não-codificante em humanos. Chamado de Projeto ENCODE, seu conjunto de 30 artigos inovadores informou que a grande maioria do genoma tem funções. O artigo mais importante que informava os resultados do Projeto ENCODE afirmou:

Estes dados permitiram que nós atribuíssemos funções bioquímicas para 80% do genoma, em particular, fora das regiões bem estudadas de codificação de proteína. [182]

Ewan Birney, coordenador-chefe de análise do ENCODE, comentou na Discover Magazine que, mesmo que o ENCODE tenha verificado apenas 147 tipos de células e que o corpo humano tem alguns milhares, “é provável que esses 80 por cento vão para 100 por cento” [183]. O mesmo artigo citou Tom Gingeras, um cientista sênior do ENCODE, observando que “quase todos os nucleotídeos estão associados a uma função de algum tipo ou outro, e agora sabemos onde elas estão, o que se liga a elas, quais são as suas associações, e mais” [184]. Outro comentário na Nature observou que “80% do genoma contém elementos ligados a funções bioquímicas, despachando a visão generalizada de que o genoma humano é em sua maior parte DNA lixo” [185]. A Discover Magazine coloca desta forma: “O ponto principal é que não é lixo” [186].

Enquanto ainda há muito que não sabemos sobre o genoma, a tendência da pesquisa está apontando claramente numa direção: quanto mais estudamos o genoma, mais detectamos funções para o DNA não-codificante. No entanto, o hoje duvidoso paradigma do “DNA lixo” nasceu e cresceu dentro do paradigma evolutivo, baseado na ideia de que nosso genoma foi construído por meio de mutações aleatórias. Sim, alguns biólogos velhacos se atreveram a buscar funções para o DNA não-codificante, mas a visão darwiniana do “DNA lixo” da genética tem, em geral, dificultado o progresso da ciência, como foi admitido por um artigo de 2003 na revista Science:

Embora cativante, o termo ‘DNA lixo’ repeliu por muitos anos os pesquisadores de linha de frente de estudar o DNA não-codificante. Quem, a não ser um pequeno número de “mendigos” da ciência genômica, gostaria de vasculhar lixo genético? No entanto, na ciência assim como na vida normal, existem alguns indivíduos que, sob o risco de serem ridicularizados, exploram territórios impopulares. Por causa deles, a visão do DNA lixo, especialmente dos elementos repetitivos, começou a mudar no início da década de 90. Agora, mais e mais biólogos consideram os elementos repetitivos como um tesouro genômico. [187]

Apesar dos pressupostos darwinianos muito difundidos porém contrários a isso, o artigo concluiu que “elementos repetitivos não são DNA lixo inútil, em vez disso são componentes importantes e integrais” [188] dos genomas dos animais. Estudos sugerem que estas longas cadeias de DNA não-codificante entre genes “constituem uma camada importante da regulação do genoma numa gama ampla de espécies” [189].

Assim como os elementos repetitivos, um outro tipo de DNA lixo para o qual algumas funções estão sendo descobertas são os pseudogenes. Pensa-se que os pseudogenes sejam cópias de genes que já foram funcionais alguma vez, mas que foram inativados por mutações. Um artigo no periódico Science Signaling observa que “os pseudogenes foram considerados por muito tempo como DNA lixo” [190], mas nota:

Avanços recentes permitiram concluir que o DNA de um pseudogene, o RNA transcrito a partir de um pseudogene, ou a proteína traduzida a partir de um pseudogene pode ter múltiplas e diferentes funções e que estas funções podem afetar não só os seus genes parentais, mas também genes não relacionados. Portanto, os pseudogenes surgiram como uma classe não apreciada anteriormente de moduladores sofisticados de expressão gênica, com um envolvimento multifacetado na patogênese do câncer humano. [191]

Na verdade, muitas funções dos pseudogenes já foram descobertas [192]: o projeto ENCODE sozinho encontrou mais de 850 pseudogenes que são “transcritos e associados com cromatina ativa” [193]. Mas o que exatamente estes pseudogenes estão fazendo? Um artigo de 2011 no jornal RNA argumenta outra vez que eles podem regular a expressão de genes:

Os pseudogenes tem sido rotulados como DNA de ‘lixo’, cópias falhadas de genes que surgem durante a evolução dos genomas. No entanto, resultados recentes estão desafiando essa alcunha; de fato, alguns pseudogenes parecem possuir potencial de regular os seus primos codificadores de proteínas. [194]

Da mesma forma, um artigo de 2012 na revista RNA Biology afirmou similarmente que os “pseudogenes foram considerados por muito tempo como DNA genômico de lixo”, mas “a regulação pelos pseudogenes é bem difundida” [195] em organismos multicelulares complexos. O artigo propôs que “a alta abundância e conservação dos pseudogenes numa variedade de espécies indicam que pressões seletivas preservam esses elementos genéticos, e sugerem que eles podem de fato desempenhar funções biológicas importantes” [196].

Os pseudogenes servem como mais um bom exemplo de como os biólogos darwinistas tem assumido que um tipo de DNA não-codificante que eles não compreendiam era lixo genético sem função e, portanto, ignoravam suas funções. Na verdade, o artigo acima mencionado na revista RNA Biology explica que uma das razões pelas quais os evolucionistas tem sido tão lentos para abandonar o pressuposto de que os pseudogenes sejam lixo é porque as suas funções são difíceis de detectar. Os autores constatam que “quase todos os pseudogenes que apresentam atividade biológica significativa estão expressos em linhas de células ou de tecidos específicos”, o que significa que apenas esses tecidos específicos ou linhas de células podem utilizar determinado pseudogene para alguma função. Além disso, é difícil de detectar as funções dos pseudogenes porque nos faltavam as ferramentas de pesquisa para entender como eles influenciam a expressão do gene. O artigo prevê que “mais e mais pseudogenes funcionais serão descobertos assim que novas tecnologias para a biologia sejam desenvolvidas no futuro”, e conclui que “o estudo dos pseudogenes funcionais está apenas no começo” [197]. Na verdade, dois biólogos importantes que escreveram na Annual Review of Genetics relataram que “os pseudogenes que tem sido investigados satisfatoriamente muitas vezes exibem papéis funcionais” [198].

Muitos biólogos evolucionistas estão apegados à visão de que nossos genomas são cheios de lixo, e resistem à interpretação de que praticamente todo o DNA tem função. De fato, um livro de 2012 sobre evolução ensina que “mais de metade do genoma não é composto nem de genes, nem de vestígios de genes humanos, nem de regiões reguladoras. Em vez disso, ele é composto de segmentos que parecem parasitas de DNA” [199]. Enquanto isso, as evidências continuam a apontar na direção oposta. Embora ainda falte muito a ser aprendido sobre o funcionamento do nosso genoma, a tendência da pesquisa é inequívoca: quanto mais estudamos o DNA não-codificante, mais encontramos evidências de função por toda parte.

Problema Bônus: Os seres humanos exibem muitas habilidades comportamentais e cognitivas que não oferecem nenhuma vantagem aparente de sobrevivência

Nos últimos anos, os biólogos evolucionistas tentaram explicar a origem das capacidades morais, intelectuais e religiosas dos seres humanos nos termos da evolução darwiniana. O psicólogo evolucionista da Universidade de Harvard Marc Hauser tem promovido a hipótese cada vez mais comum de que “as pessoas nascem com uma gramática moral montada em seus circuitos neurais pela evolução” [200].

Os seres humanos parecem montados para a moralidade, mas nós fomos programados por processos evolutivos não controlados? A seleção natural não consegue explicar atos extremos de bondade humana. Independentemente da sua origem ou crenças, na situação de encontrar estranhos presos dentro de um veículo em chamas, as pessoas arriscarão suas próprias vidas para ajudá-los a escapar — sem vantagem evolutiva para si mesmas. Por exemplo, o biólogo evolucionista Jeffrey Schloss explica que as equipes de resgate do Holocausto assumiram grandes riscos os quais não ofereciam nenhum benefício pessoal:

A família do socorrista, outros membros da família e amigos ficaram todos em perigo, e eles foram reconhecidos por estarem em perigo pelo socorrista. Além disso, mesmo se a família escapasse da morte, eles muitas vezes experimentaram privação de alimentos, espaço e comércio social; aflição emocional extrema; e perda da atenção pelo socorrista. [201]

Francis Collins dá o exemplo de Oskar Schindler, o empresário alemão que arriscou sua vida “para salvar mais de mil judeus das câmaras de gás” [202]. Como Collins ressalta, “isso é o oposto de salvar seus genes” [203]. Schloss acrescenta outros exemplos de comportamento “radicalmente sacrificial”, que “reduz o sucesso reprodutivo” e não oferece nenhum benefício evolutivo, tais como a pobreza voluntária, o celibato, e martírio [204].

Apesar das reivindicações de psicólogos evolucionistas, muitas das habilidades mais impressionantes na caridade, na arte e no intelectualismo da humanidade ultrapassam os requisitos básicos da seleção natural. Se a vida for simplesmente uma questão de sobrevivência e reprodução, por que os seres humanos compoem sinfonias, investigam a mecânica quântica, e constroem catedrais?

Philip Skell, membro da Academia Nacional de Ciências dos EUA (Natural Academy of Sciences), explicou por que a psicologia evolucionista não prevê adequadamente o comportamento humano:

Explicações darwinianas para tais coisas são flexíveis demais: A seleção natural torna os seres humanos egoístas e agressivos — exceto quando se tornam altruístas e serenos. Ou a seleção natural produz homens viris que avidamente espalham suas sementes — exceto quando ela prefere homens que sejam fiéis protetores e provedores. Quando uma explicação é tão flexível ao ponto de explicar qualquer comportamento, é difícil de testa-la experimentalmente, muito menos de usa-la como um catalisador para a descoberta científica. [205]

Ao contrário do darwinismo, a evidência indica que a vida humana não se trata de mera sobrevivência e reprodução. Mas, além de nossa singularidade moral, os seres humanos também são distintos pelo seu uso de linguagem complexa. Como o professor e lingüista do MIT Noam Chomsky observa:

A linguagem humana parece ser um fenômeno único, sem análogo significativo no mundo animal. Se é assim, é bem insensato mostrar o problema de explicar a evolução da linguagem humana a partir de sistemas mais primitivos de comunicação que aparecem em níveis mais baixos de capacidade intelectual. (…) Não existem razões para se supor que as “lacunas” sejam “atravessáveis”. [206]

Por último, o ser humano também é a única espécie que busca investigar o mundo natural através da ciência. Na verdade, da próxima vez que alguém tentar listar as diferenças entre humanos e macacos, lembrem-no que são os seres humanos que escrevem artigos científicos para estudar os macacos, e não o contrário.

Ciência versus religião?

Esta série citou dezenas de artigos da literatura científica e técnica e de cientistas de muita credibilidade os quais, tomados em conjunto, representam fortes desafios científicos à moderna teoria da evolução. No entanto, os defensores do neo-darwinismo afirmam comumente que objeções científicas legítimas para seu ponto de vista não existem, e que as únicas críticas que ficam são baseadas em religião. É claro que isso não é verdade. Na verdade, a tentativa de renomear as críticas da evolução neo-darwiniana como se fossem religiosas é uma manobra típica para ignorar as críticas científicas sem enfrenta-las.

Toda a argumentação, é claro, levanta tanto argumentos religiosos como científicos e que apoiam a visão da criação progressiva, segundo a qual Deus teria a vida na Terra ao longo de milhões de anos. Este ponto de vista tem dimensões religiosas e científicas, sendo por isso diferente da abordagem estritamente científica feita nesta série.

O fato de que alguns argumentos possam ser baseados em religião não altera em nada o fato de que existem grandes desafios científicos à teoria neo-darwiniana. Da mesma forma, o fato de existirem importantes dimensões religiosas neste debate não significa que os materialistas possam ignorar as fragilidades científicas dos seus próprios argumentos. Até que esses problemas científicos sejam respondidos, os cientistas vão continuar a aumentar seu ceticismo pela teoria da evolução.

Texto traduzido e adaptado de ENV.

Referências:

[157] Horatio Hackett Newman, citado em The World’s Most Famous Court Trial: Tennessee Evolution Case, 2nd ed. (Dayton, TN: Bryan College, 1990), 268. Veja também Robert Wiedersheim, The Structure of Man: An Index to His Past History (London: MacMillan and Co, 1895; reimpresso por Kessinger, 2007).

[158] Laura Spinney, “Vestigial organs: Remnants of evolution”, New Scientist, 2656 (14 de maio de 2008), em http://www.newscientist.com/article/mg19826562.100-vestigial-organs-remnants-of-evolution.html.

[159] Sylvia S. Mader, Inquiry into Life, 10th ed. (McGraw Hill, 2003), 293.

[160] Laura Spinney, “The Five things humans no longer need”, New Scientist (19 de maio de 2008), em http://www.newscientist.com/article/dn13927-five-things-humans-no-longer-need.html.

[161] Douglas Theobald, “29+ Evidences for Macroevolution”, TalkOrigins.org, em http://www.talkorigins.org/faqs/comdesc/section2.html.

[162] Veja Loren G. Martin, “What is the function of the human appendix? Did it once have a purpose that has since been lost?”, Scientific American (21 de outubro de 1999), em http://www.scientificamerican.com/article/what-is-the-function-of-the-human-appendix-did-it-once-have-a-purpose-that-has-since-been-lost/.

[163] William Parker citado em Charles Q. Choi, “The Appendix: Useful and in Fact Promising”, LiveScience (24 de agosto de 2009).

[164] Miller, “Life’s Grand Design”, 24-32. Miller cita “genes órfãos” mas esses genes não são considerados genes sem função. Ao invés disso, genes órfãos são genes funcionais que não possuem homólogo conhecido entre outros genes. Tais genes órfãos dão evidências de design inteligente pois não há fonte plausível das informações neles presentes.

[165] Richard Dawkins, “The Information Challenge”, The Skeptic, 18 (dezembro de 1998).

[166] Francis Collins, The Language of God: A Scientist Presents Evidence for Belief (New York: Free Press, 2006), 136-37.

[167] Ibid., pp. 134-137.

[168] Richard Sternberg, “On the Roles of Repetitive DNA Elements in the Context of a Unified Genomic- Epigenetic System”, Annals of the New York Academy of Sciences, 981 (2002): 154-88.

[169] Ibid.

[170] Ibid.

[171] Tammy A. Morrish, Nicolas Gilbert, Jeremy S. Myers, Bethaney J. Vincent, Thomas D. Stamato, Guillermo E. Taccioli, Mark A. Batzer, and John V. Mora “DNA repair mediated by endonuclease-independent LINE-1 retrotransposition”, Nature Genetics, 31 (junho de 2002): 159-65.

[172] Galit Lev-Maor, Rotem Sorek, Noam Shomron, and Gil Ast, “The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons”, Science, 300 (23 de maio de 2003): 1288-91;
Wojciech Makalowski, “Not junk after all”, Science, 300 (23 de maio de 2003): 1246-47.

[173] Nurit Paz-Yaacova, Erez Y. Levanonc, Eviatar Nevod, Yaron Kinare, Alon Harmelinf, Jasmine Jacob-Hirscha, Ninette Amariglioa, Eli Eisenbergg, and Gideon Rechavi, “Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates”, Proceedings of the National Academy of Sciences USA, 107 (6 de julho de 2010): 12174-79.

[174] Morrish et al., “DNA repair mediated by endonuclease-independent LINE-1 retrotransposition”, 159-65;
Annie Tremblay, Maria Jasin, and Pierre Chartrand, “A Double-Strand Break in a Chromosomal LINE Element Can Be Repaired by Gene Conversion with Various Endogenous LINE Elements in Mouse Cells”, Molecular and Cellular Biology, 20 (janeiro de 2000): 54-60;
Ulf Grawunder, Matthias Wilm, Xiantuo Wu, Peter Kulesza, Thomas E. Wilson, Matthias Mann, and Michael R. Lieber, “Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells”, Nature, 388 (31 de julho de 1997): 492-95;
Thomas E. Wilson, Ulf Grawunder, and Michael R. Lieber, “Yeast DNA ligase IV mediates non-homologous DNA end joining”, Nature, 388 (31 de julho de 1997): 495-98.

[175] Richard Sternberg and James A. Shapiro, “How repeated retroelements format genome function”, Cytogenetic and Genome Research, 110 (2005): 108-16.

[176] Jeffrey S. Han, Suzanne T. Szak, e Jef D. Boeke, “Transcriptional disruption by the L1 retrotransposon e implications for mammalian transcriptomes”, Nature, 429 (20 de maio de 2004): 268-74;
Bethany A. Janowski, Kenneth E. Huffman, Jacob C. Schwartz, Rosalyn Ram, Daniel Hardy, David S. Shames, John D. Minna, e David R. Corey, “Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs”, Nature Chemical Biology, 1 (setembro de 2005): 216-22;
J. A. Goodrich, e J. F. Kugel, “Non-coding-RNA regulators of RNA polymerase II transcription”, Nature Reviews Molecular e Cell Biology, 7 (agosto de 2006): 612-16;
L.C. Li, S. T. Okino, H. Zhao, H., D. Pookot, R. F. Place, S. Urakami, H. Enokida, e R. Dahiya, “Small dsRNAs induce transcriptional activation in human cells”, Proceedings of the National Academy of Sciences USA, 103 (14 de novembro de 2006): 17337-42;
A. Pagano, M. Castelnuovo, F. Tortelli, R. Ferrari, G. Dieci, e R. Cancedda, “New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts”, PLoS Genetics, 3 (fevereiro de 2007): e1;
L. N. van de Lagemaat, J. R. Landry, e D. L. Mager, P. Medstrand, “Transposable elements in mammals promote regulatory variation e diversification of genes with specialized functions”, Trends in Genetics, 19 (outubro de 2003): 530-36;
S. R. Donnelly, T. E. Hawkins, e S. E. Moss, “A Conserved nuclear element with a role in mammalian gene regulation”, Human Molecular Genetics, 8 (1999): 1723-28;
C. A. Dunn, P. Medstrand, e D. L. Mager, “An endogenous retroviral long terminal repeat is the dominant promoter for human B1,3- galactosyltransferase 5 in the colon”, Proceedings of the National Academy of Sciences USA, 100 (28 de outubro de 2003):12841-46;
B. Burgess-Beusse, C. Farrell, M. Gaszner, M. Litt, V. Mutskov, F. Recillas-Targa, M. Simpson, A. West, e G. Felsenfeld, “The insulation of genes from external enhancers e silencing chromatin”, Proceedings of the National Academy of Sciences USA, 99 (10 de dezembro de 2002): 16433-37;
P. Medstrand, Josette-Renée Landry, e D. L. Mager, “Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor e Apolipoprotein C-I Genes in Humans”, Journal of Biological Chemistry, 276 (19 de janeiro de 2001): 1896-1903;
L. Mariño-Ramíreza, K.C. Lewisb, D. Landsmana, e I.K. Jordan, “Transposable elements donate lineage-specific regulatory sequences to host genomes”, Cytogenetic e Genome Research, 110 (2005):333-41.

[177] S. Henikoff, K. Ahmad, H. and S. Malik “The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA”, Science, 293 (10 de agosto de 2001): 1098-1102;
C. Bell, A. G. West, and G. Felsenfeld, “Insulators and Boundaries: Versatile Regulatory Elements in the Eukaryotic Genome”, Science, 291 (19 de janeiro de 2001): 447-50;
M.-L. Pardue and P.G. DeBaryshe, “Drosophila telomeres: two transposable elements with important roles in chromosomes”, Genetica, 107 (1999): 189-96;
S. Henikoff, “Heterochromatin function in complex genomes”, Biochimica et Biophysica Acta, 1470 (fevereiro de 2000): O1-O8;
L. M.Figueiredo, L. H. Freitas-Junior, E. Bottius, Jean-Christophe Olivo-Marin, and A. Scherf, “A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation”, The EMBO Journal, 21 (2002): 815-24;
Mary G. Schueler, Anne W. Higgins, M. Katharine Rudd, Karen Gustashaw, and Huntington F. Willard, “Genomic and Genetic Definition of a Functional Human Centromere”, Science, 294 (5 de outubro de 2001): 109-15.

[178] Ling-Ling Chen, Joshua N. DeCerbo, and Gordon G. Carmichael, “Alu element-mediated gene silencing”, The EMBO Journal 27 (2008): 1694-1705;
Jerzy Jurka, “Evolutionary impact of human Alu repetitive elements”, Current Opinion in Genetics & Development, 14 (2004): 603-8;
G. Lev-Maor et al. “The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons”, 1288-91;
E. Kondo-Iida, K. Kobayashi, M. Watanabe, J. Sasaki, T. Kumagai, H. Koide, K. Saito, M. Osawa, Y. Nakamura, and T. Toda, “Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD)”, Human Molecular Genetics, 8 (1999): 2303-09;
John S. Mattick and Igor V. Makunin, “Non-coding RNA”, Human Molecular Genetics, 15 (2006): R17-R29.

[179] M. Mura, P. Murcia, M. Caporale, T. E. Spencer, K. Nagashima, A. Rein, and M. Palmarini, “Late viral interference induced by transdominant Gag of an endogenous retrovirus”, Proceedings of the National Academy of Sciences USA, 101 (27 de julho de 2004): 11117-22;
M. Kandouz, A. Bier, G. D Carystinos, M. A Alaoui-Jamali, and G. Batist, “Connexin43 pseudogene is expressed in tumor cells and inhibits growth”, Oncogene, 23 (2004):4763-70.

[180] K. A. Dunlap, M. Palmarini, M. Varela, R. C. Burghardt, K. Hayashi, J. L. Farmer, and T. E. Spencer, “Endogenous retroviruses regulate periimplantation placental growth and differentiation”, Proceedings of the National Academy of Sciences USA, 103 (26 de setembro de 2006):14390-95;
L. Hyslop, M. Stojkovic, L. Armstrong, T. Walter, P. Stojkovic, S. Przyborski, M. Herbert, A. Murdoch, T. Strachan, and M. Lakoa, “Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages”, Stem Cells, 23 (2005): 1035-43;
E. Peaston, A. V. Evsikov, J. H. Graber, W. N. de Vries, A. E. Holbrook, D. Solter, and B. B. Knowles, “Retrotransposons Regulate Host Genes in Mouse Oocytes and Preimplantation Embryos”, Developmental Cell, 7 (outubro de 2004): 597-606.

[181] Richard Sternberg and James A. Shapiro, “How repeated retroelements format genome function”, Cytogenetic and Genome Research, 110 (2005): 108-16.

[182] The ENCODE Project Consortium, “An integrated encyclopedia of DNA elements in the human genome”, Nature, 489:57-74 (6 de setembro de 2012).

[183] Ewan Birney, citado em Ed Yong, “ENCODE: the rough guide to the human genome”, Discover Magazine (5 de setembro de 2012), em http://blogs.discovermagazine.com/notrocketscience/2012/09/05/encode-the-rough-guide-to-the-human-genome/

[184] Tom Gingeras, citado em Ed Yong, “ENCODE: the rough guide to the human genome”, Discover Magazine (5 de setembro de 2012), em http://blogs.discovermagazine.com/notrocketscience/2012/09/05/encode-the-rough-guide-to-the-human-genome/

[185] Joseph R. Ecker, “Serving up a genome feast”, Nature, 489:52-55 (6 de setembro de 2012).

[186] Ed Yong, “ENCODE: the rough guide to the human genome”, Discover Magazine (5 de setembro de 2012), em http://blogs.discovermagazine.com/notrocketscience/2012/09/05/encode-the-rough-guide-to-the-human-genome/

[187] Makalowski, “Not Junk After All”, 1246-47.

[188] Ibid.

[189] David R. Kelley and John L. Rinn, “Transposable elements reveal a stem cell specific class of long noncoding RNAs”, Genome Biology, 13:R107 (2012).

[190] Laura Poliseno, “Pseudogenes: Newly Discovered Players in Human Cancer”, Science Signaling, 5 (242) (18 de setembro de 2012).

[191] Ibid.

[192] Ver por exemplo D. Zheng and M. B. Gerstein, “The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they?”, Trends in Genetics, 23 (maio de 2007): 219-24;
S. Hirotsune et al., “An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene”, Nature, 423 (1 de maio de 2003): 91-96;
O. H. Tam et al., “Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes”, Nature, 453 (22 de maio de 2008): 534-38;
D. Pain et al., “Multiple Retropseudogenes from Pluripotent Cell-specific Gene Expression Indicates a Potential Signature for Novel Gene Identification”, The Journal of Biological Chemistry, 280 (25 de fevereiro de 2005):6265-68;
J. Zhang et al., “NANOGP8 is a retrogene expressed in cancers”, FEBS Journal, 273 (2006): 1723-30.

[193] The ENCODE Project Consortium, “An integrated encyclopedia of DNA elements in the human genome”, Nature, 489:57-74 (6 de setembro de 2012).

[194] Ryan Charles Pink, Kate Wicks, Daniel Paul Caley, Emma Kathleen Punch, Laura Jacobs, and David Paul Francisco Carter, “Pseudogenes: Pseudo-functional or key regulators in health and disease?”, RNA, 17 (2011): 792-98.

[195] Yan-Zi Wen, Ling-Ling Zheng, Liang-Hu Qu, Francisco J. Ayala and Zhao-Rong Lun, “Pseudogenes are not pseudo any more”, RNA Biology, 9(1):27-32 (janeiro de 2012).

[196] Ibid.

[197] Ibid.

[198] Evgeniy S. Balakirev and Francisco J. Ayala, “Pseudogenes, Are They ‘Junk’ or Functional DNA?”, Annual Review of Genetics, 37 (2003): 123-51.

[199] Carl Zimmer and Douglas Emlen, Evolution: Making Sense of Life, p. 132 (Roberts and Company, 2012).

[200] Nicholas Wade, “An Evolutionary Theory of Right and Wrong”, The New York Times (31 de outubro de 2006), acessado em 28 de abril de 2012, http://www.nytimes.com/2006/10/31/health/psychology/31book.html

[201] Jeffrey P. Schloss, “Evolutionary Accounts of Altruism & the Problem of Goodness by Design”, in Mere Creation;
Science, Faith & Intelligent Design
, ed. William A. Dembski (Downers Grove, IL, Intervarsity Press, 1998), 251.

[202] Francis Collins quoted in Dan Cray, “God vs. Science”, Time Magazine (5 de novembro de 2006), acessado em 28 de abril de 2012, http://www.time.com/time/printout/0,8816,1555132,00.html

[203] Ibid.

[204] Jeffrey P. Schloss, “Emerging Accounts of Altruism: ‘Love Creation’s Final Law’?”, in Altruism and Altruistic Love: Science, Philosophy, & Religion in Dialogue, eds. Stephen G. Post, Lynn G. Underwood, Jeffrey P. Schloss, and William B. Hurlbut (Oxford: Oxford University Press, 2002), 221.

[205] Philip S. Skell, “Why do we invoke Darwin?”, The Scientist, 19 (29 de agosto de 2005): 10.

[206] Noam Chomsky, Language and Mind, 3rd ed. (Cambridge: Cambridge University Press, 2006), 59.

Anúncios

Óculos cor-de-rosa: Lenski, citrato e a BioLogos

Imagem: Nina H./Flickr

Os leitores das minhas postagens sabem que eu sou um grande fã do professor Richard Lenski, um microbiologista da Michigan State University e membro da Academia Nacional de Ciências dos EUA. Nos últimos anos, ele vem realizando o maior experimento de laboratório já empreendido em evolução. Pelo cultivo de E. coli em frascos de maneira contínua, ele vem acompanhando as mudanças evolutivas na bactéria por mais de 50.000 gerações (o que equivale a cerca de um milhão de anos para animais de grande porte). Embora Lenski não seja decididamente um defensor do Design Inteligente, seu trabalho nos habilita a perceber o que a evolução realmente faz quando se tem recursos de um grande número de organismos ao longo de uma quantidade substancial de gerações. Ao invés de especular, Lenski e seus colegas observaram o funcionamento da mutação e da seleção. Por isso, os proponentes do DI deveriam ficar muito gratos.

Em um manuscrito publicado há alguns anos no Quarterly Review of Biology (Behe 2010), eu discuti os resultados de laboratório da evolução das últimas quatro décadas até aquele ponto, incluindo os de Lenski. Seu laboratório mostrou claramente que mutação aleatória e seleção melhoraram a bactéria com o tempo, como foi avaliado pelo número de descendentes que ela conseguiria produzir em um dado momento. Ele demonstrou sem dúvida que existem mutações benéficas e elas podem se espalhar rapidamente numa população de organismos. Contudo, uma vez que o laboratório de Lenski identificou eventualmente algumas mutações no nível de DNA (que é uma tarefa difícil), muitas das mutações benéficas acabaram por ser, surpreendentemente, degradantes. Em outras palavras, quebraram ou deletaram alguns genes pré-existentes ou elementos regulatórios genéticos de modo que eles não funcionassem mais, na verdade, ajudou o organismo nas condições em que foi cultivado. Outras mutações benéficas alteraram genes pré-existentes ou elementos regulatórios de alguma forma.

O que notavelmente não era visto em seu trabalho eram mutações benéficas que resultassem da construção do que eu apelidei de novos “Elementos Codificados Funcionais” (no inglês, Functional Coded elemenTs, “FCTs”). A grosso modo, o FCT é uma sequência de DNA que afeta a produção ou o processamento de um gene ou de um produto do gene (ver minha crítica para uma definição mais rigorosa). Em suma, melhorias foram feitas quebrando genes existentes, ou mexendo com eles de maneira leve, mas não fazendo novos genes ou novos elementos regulatórios. A partir dessas informações, eu montei “A Primeira Regra da Evolução Adaptativa”: quebre ou atenue qualquer elemento codificado funcional cuja perda renderia um ganho líquido de adaptação. Para dizer o mínimo, a Primeira Regra não é o que você esperaria de um processo tal como a evolução darwiniana, que é apresentada como sendo capaz de construir uma maquinaria molecular incrivelmente sofisticada.

Antes da minha crítica ser publicada, o laboratório de Lenski observou uma deformação mutante nos experimentos que conseguia metabolizar citrato na presença de oxigênio, o que E. coli não mutante não conseguia fazer. (Blount et al., 2008). É importante notar, no entanto, que a bactéria consegue metabolizar citrato na ausência de oxigênio. Isto permitiu que a bactéria mutante levasse a melhor sobre seus familiares, porque o meio de crescimento continha uma grande quantidade de citrato, bem como oxigênio. Foi um resultado intrigante, e foi apontado como uma grande inovação, mas naquele momento o laboratório de Lenski não foi capaz de rastrear em nível de DNA as mutações exatas que causaram a mudança.

Agora eles têm. Em uma publicação recente na Nature (Blount et al., 2012) eles relatam que as mutações múltiplas conferem aumento da capacidade de transporte de citrato numa atmosfera contendo oxigênio. Eles dividem as mutações conceitualmente em três categorias: 1) potenciação; 2) atualização; e 3) refinamento. “Atualização” é o nome que eles dão para a mutação que confere uma habilidade fraca para o transporte de citrato no laboratório E. coli (ocorre em uma bactéria que falta apenas uma proteína de transporte de citrato para dentro da célula na presença de oxigênio; todas as outras enzimas necessárias para metabolizar mais citrato já estão presentes). O gene para o transportador de citrato, citT, que funciona na ausência de oxigênio é diretamente a montante dos genes para duas outras proteínas que possuem promotores que são ativos na presença de oxigênio. Uma duplicação de um segmento desta região acidentalmente colocou o gene citT próximo a um destes promotores, de modo que o gene citT poderia então ser expresso na presença de oxigênio. A duplicação de genes é um tipo de mutação que é conhecida por ser bastante comum, de modo que este resultado, embora exija um grande esforço de investigação cuidadosa para uma infra fixação, não é surpreendente.

Ao longo do tempo o mutante tem melhor utilização de citrato, o que os autores chamaram de “refinamento”. Muitos estudos mostraram que isso foi devido a múltiplas duplicações da região gênica mutante, acima de 3-9 cópias. Mais uma vez, a duplicação de genes é um processo bastante comum, portanto, não é de se estranhar. Em outro experimento, Lenski e colaboradores mostraram que aumentando a concentração do gene transportador de citrato é suficiente por si só para explicar a maior capacidade de E. coli crescer em citrato. Não foram necessárias outras mutações.

A parte mais misteriosa de todo o processo é que o grupo chamado “potencialização”. Acontece que as E. coli originais que começaram há décadas atrás não poderiam se beneficiar da duplicação de genes, que reuniu um gene citT com um promotor tolerante ao oxigênio. Antes que pudesse se beneficiar, uma mutação preliminar tinha de ocorrer na bactéria em outro lugar em vez da região contendo os genes do metabolismo de citrato. A mutação foi capaz de determinar, o que Lenski e colaboradores não foram capazes. No entanto, eles examinaram a bactéria para mutações que podem contribuir para a potenciação, e encontrou que “uma mutação em arcB, a qual codifica uma histidina quinase, é notável porque desativa o gene que causa a supra regulação do ciclo de ácido tricarboxílico” (eles tentaram, mas foram incapazes de testar essa hipótese). Em outras palavras, a “potenciação” pode envolver a degradação de um gene não relacionado.

O laboratório de Lenski fez uma imensa quantidade de trabalho cuidadoso e merece muitos elogios. No entanto, a questão que vale 64 mil dólares é, o que é que os resultados mostram sobre o poder do mecanismo darwiniano? A resposta é, eles não mostram que ele seja capaz de qualquer coisa além daquilo que já era conhecido. Por exemplo, em minha revisão sobre os experimentos evolutivos laboratoriais eu discuti o trabalho de Zinser et al. (2003), onde uma sequencia de rearranjo trouxe um promotor próximo de um gene que faltava. Eu também discuti experimentos como os de Licis e van Duin (2006), onde múltiplas mutações sequenciais aumentaram a capacidade de um FCT. Apesar dos resultados visualmente surpreendente de Lenski – onde um balão normalmente claro tornou-se muito nublado com o crescimento excessivo de bactérias em citrato – à nível molecular não surgiu nada novo.

Outra pessoa que segue de perto os resultados de Lenski é Dennis Venema, professor associado do Departamento de Biologia da Trinity Western University e membro da fundação BioLogos. Fundada por Francis Collins, a BioLogos defende a compatibilidade da ciência darwiniana e teologia cristã. Eu concordo que o mecanismo darwiniano (corretamente entendido) é teoricamente compatível com a teologia cristã. No entanto, eu também acho que o darwinismo é insuficiente em termos científicos. Uma grande parte dos escritores da BioLogos acham que é adequado, e tentam defendê-la contra os céticos do darwinismo, mais especificamente contra os defensores do Design Inteligente como eu.

Em várias postagens na BioLogos, o professor Venema compara os resultados atuais do trabalho com citrato de Lenski aos argumentos que eu tinha feito em meu comentário na Quarterly Review of Biology e no meu livro de 2007, The Edge of Evolution. Considerando que eu tinha argumentado que havia um limite para o número de mutações não selecionadas (prejudiciais ou neutras) que nós poderíamos esperar, de maneira razoável, para que um processo darwiniano não direcionado tenha à sua disposição na construção de um sistema complexo, Venema acha que o trabalho recente de Lenski demonstrou que esse limite foi excedido. Além disso, enquanto eu tinha apontado que nenhuma das mutações observadas no trabalho de Lenski até a data da revisão teria sido um ganho de FCT, Venema escreveu que as mutações publicadas recentemente sobre citrato constituíam tal característica.

Discordo em ambos os casos. A duplicação de genes que trouxe um promotor tolerante a oxigênio para perto do gene citT não fez qualquer novo elemento funcional. Em vez disso, ele simplesmente duplicou recursos existentes. Os dois FCTs que compõem o lócus transportador de citrato tolerante a oxigênio – o promotor e o gene – eram funcionais antes da duplicação e continuaram funcionais depois. Eu havia escrito na minha crítica que um tipo de mutação que poderia ser classificada como um ganho de FCT seria uma duplicação de genes com posterior modificação da sequência, permitindo que o gene se especialize em alguma tarefa. Venema acha que a mutação observada por Lenski é um evento como esse.

Ele ignorou o fato de que não houve modificação subsequente na sequência; um segmento de ADN simplesmente duplicado paralelamente, unindo duas FCTs pré-existentes (é verdade que a sequência da proteína codificada pelo gene duplicado inclui um fragmento de um dos genes próximos, mas não há nenhuma evidência nem razão para acreditar que o fragmento fundido é necessário para a atividade da proteína). Na minha crítica, eu classifico isso como um evento de modificação de função. Um exemplo de um verdadeiro ganho de FCT por duplicação citado em meu comentário foi o trabalho de Olsthoorn e van Duin (1996), onde a duplicação de 14 nucleotídeos levou à formação de novos elementos codificados funcionais (não simplesmente repetindo elementos preexistentes), por isso não é simplesmente uma mutação de modificação-de-função. A mutação para o citrato não fez nada disso.

Venema conta o número de mutações necessárias para conseguir a função de importação de citrato plenamente funcional na obra de Lenski, e chega a mais ou menos uma meia dúzia. Infelizmente, muitas dessas são duplicações paralelas dos fracos transportadores citT, que são claramente selecionáveis, mutações benéficas. Para chegar a os limites ao darwinismo, enfatizei que esse mecanismo teria certamente que funcionar se mutações benéficas gradualmente e de forma incremental, em série, pudessem fazer o trabalho. Assim, essas mutações não contam na estimativa do limite. Somente mutações deletérias e neutras necessárias contam contra o limite para a evolução darwiniana.

Venema argumenta que talvez toda a biologia funcional complexa poderia ser alcançada por mutações benéficas graduais. Bem, abençoado seja seu coração otimista, mas os dados não nos dão nenhum motivo para pensar que, pela razão de se aumentar gradualmente o total de uma proteína na atividade celular por duplicação de gene sequencial seja benéfico sucessivamente, todas as rotas para sistemas complexos que envolvem vários elementos distintos iriam ser. Muito pelo contrário, como afirmei muitas vezes.

O professor Venema também conta com várias mutações “potencializadoras”, como que contribuindo para o sistema. Infelizmente, o que quer que essas mutações sejam, eles não são parte do próprio sistema metabólico do citrato. Em vez disso, eles estão em maior parte do plano de fundo genético. Se as especulações de Lenski e seus colegas de trabalho estão corretas (Blount et al. 2012), pelo menos uma das mutações potencializadoras degrada um gene relacionado e, portanto, em si conta como uma mutação de perda de FCT. Ao contar as mutações que contribuem para o limite da evolução para a construção de um recurso, apenas os diretamente envolvidos no recurso são contados, não aquelas que indiretamente que contribuem para um plano de fundo genético receptivo (que são em grande número).
Assim, ao contrário Venema, eu conto talvez três ou quatro mutações – a duplicação inicial colocando o promotor tolerante a oxigênio perto do gene citT, além de várias rodadas de duplicação daquela região. Todas as mutações são de modificação-de-função no sistema de classificação que eu descrevi. Devo acrescentar que não há nenhuma razão para pensar que os processos darwinianos não podem produzir mutações de ganho de FCT, e eu revi vários desses eventos. Mas eles estão em grande desvantagem numérica em relação as perdas de FCT e modificações de função por mutações benéficas.

No meu ponto de vista, num retrospecto, o aspecto mais surpreendente da mutação citT tolerante a oxigênio foi que ele mostrou-se tão difícil de alcançar. Se antes do trabalho de Lenski tivesse sido feito alguém tivesse esboçado para mim um desenho animado da duplicação original que produziu a mudança metabólica, eu teria assumido que seria suficiente um único passo para alcançá-la. O fato é que isso foi consideravelmente mais difícil e serve pra que mostrar que mesmo os céticos como eu superestimam o poder do mecanismo darwiniano.

Texto de Michael Behe, traduzido e adaptado do original em ENV.

Referências:

Barrick,J.E., Yu,D.S., Yoon,S.H., Jeong,H., Oh,T.K., Schneider,D., Lenski,R.E., e Kim,J.F. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243-1247.

Behe,M.J. 2010. Experimental Evolution, Loss-of-function Mutations, and “The First Rule of Adaptive Evolution.” Q. Rev. Biol. 85:1-27.

Behe,M.J. 2007. The Edge of Evolution: the Search for the Limits of Darwinism. Free Press: New York.

Blount,Z.D., Borland,C.Z., e Lenski,R.E. 2008. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A 105:7899-7906.

Blount,Z.D., Barrick,J.E., Davidson,C.J., e Lenski,R.E. 2012. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513-518.

Licis,N. e van,D.J. 2006. Structural constraints and mutational bias in the evolutionary restoration of a severe deletion in RNA phage MS2. J. Mol. Evol. 63:314-329.

Olsthoorn,R.C. e van Duin,D.J. 1996. Evolutionary reconstruction of a hairpin deleted from the genome of an RNA virus. Proc. Natl. Acad. Sci. U.S.A 93:12256-12261.

Venema,D. 2012. Behe, Lenski and the “Edge” of Evolution, Part 1: Just the FCTs, Please. The Biologos Forum, aqui.

Zinser,E.R., Schneider,D., Blot,M., e Kolter,R. 2003. Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci. Genetics 164:1271-1277.

Problema 3: Mutações aleatórias gradativas não conseguem produzir a informação genética necessária para a complexidade irredutível

Imagem: repphotos/Flickr

Nota do tradutor: esta é a parte 3 da série de 10 artigos sobre os problemas científicos da evolução biológica e química. A série é baseada no capítulo “The Top Ten Scientific Problems with Biological and Chemical Evolution” de autoria de Casey Luskin no livro More than Myth, editado por Paul Brown e Robert Stackpole (Chartwell Press, 2014). Eis a lista de todos os artigos: Artigo introdutório, Problema 1, Problema 2, Problema 3, Problema 4, Problema 5, Problema 6, Problema 7, Problema 8, Problema 9, Problema 10.


De acordo com os biólogos evolucionistas, depois que a vida começou, a evolução darwiniana assumiu o posto e eventualmente teria produzido a grande diversidade de vida que observamos hoje. De acordo com o ponto de vista tradicional, os processos de mutação aleatória e seleção natural formaram a grande complexidade de vida através de pequenos passos mutacionais por vez. Todos as características complexas da vida, é claro, são entendidas como estando codificadas no DNA dos organismos vivos. A construção de novas características, portanto, requer a geração de novas informações no código genético. Essas informações necessárias podem ser produzidas nesse processo, passo-a-passo e sem controle, exigido pela teoria de Darwin?

Quase todo mundo concorda que a evolução darwiniana tende a funcionar bem quando cada pequeno passo ao longo de um caminho evolutivo oferece alguma vantagem de sobrevivência. Michael Behe, crítico de Darwin, observa que “se só uma mutação é necessária para conferir alguma habilidade, então a evolução darwiniana tem pouco problema para encontrá-la” [24]. No entanto, quando múltiplas mutações devem estar presentes simultaneamente para haver ganho de uma vantagem funcional, a evolução darwiniana fica emperrada. Como Behe explica: “Se mais de uma mutação é necessária, a chance de obter todas as mutações corretas fica exponencialmente pequena” [25].

Behe, professor de bioquímica na Lehigh University, cunhou o termo “complexidade irredutível” para descrever sistemas que requerem muitas partes — e por isso, muitas mutações que precisam estar presentes de uma vez só — antes de fornecer qualquer vantagem de sobrevivência para o organismo. De acordo com Behe, tais sistemas não pode evoluir no processo gradual passo-a-passo exigido pela evolução darwiniana. Como resultado, ele afirma que a mutação aleatória e seleção natural sem controle não podem gerar a informação genética necessária para produzir estruturas com complexidade irredutível. Muitas mutações simultâneas seriam necessárias — um evento que é bem improvável de acontecer.

A observação desse problema não se limita aos críticos de Darwin. Um artigo de um biólogo evolucionista proeminente no periódico Proceedings of the U.S. National Academy of Science reconhece que “o surgimento simultâneo de todos os componentes de um sistema não é plausível” [26]. Da mesma forma, o biólogo evolucionista da University of Chicago Jerry Coyne — um defensor fiel do Darwinismo — admite que “a seleção natural não pode construir uma característica em que passos intermediários não confiram um benefício total ao organismo” [27]. Até Darwin reconheceu esse problema intuitivamente, como ele escreveu em A Origem das Espécies:

Se pudesse ser demonstrado que existiu algum órgão complexo, que não poderia ter sido formado por numerosas, sucessivas e ligeiras modificações, minha teoria seria totalmente invalidada [28].

Os cientistas evolucionistas, como Darwin e Coyne, afirmam que não conhecem algum caso real em que a seleção darwiniana fica emperrada dessa maneira. Mas eles concordam, ao menos em princípio, que existem limites teóricos do que a evolução darwiniana possa realizar: se uma característica não puder ser formada por “numerosas, sucessivas e ligeiras modificações”, e se “as etapas intermediárias não conferirem um benefício total para o organismo”, então a evolução darwiniana estará “totalmente invalidada”.

Os problemas são reais. A biologia moderna continua descobrindo mais e mais exemplos de que a complexidade biológica parece ultrapassar a capacidade geradora de informação da evolução darwiniana.

Máquinas moleculares

Em seu livro A Caixa Preta de Darwin, Michael Behe discorre sobre máquinas moleculares que precisam de múltiplas partes já presentes antes para que pudessem funcionar e oferecer alguma vantagem para o organismo. O exemplo mais famoso de Behe é o flagelo bacteriano — um motor rotativo micromolecular, funcionando como um motor de popa na bactéria para impulsioná-la pelo meio líquido para encontrar comida. Sobre isso, os flagelos tem um projeto básico que é muito semelhante a alguns motores feitos por seres humanos e que contêm muitas peças que são familiares para os engenheiros, incluindo rotor, estator, junta universal, hélice, freio e embreagem. Como um biólogo molecular escreveu na revista Cell, “assim como outros motores, o flagelo se assemelha a uma máquina projetada por um ser humano” [29]. No entanto, a eficiência energética dessas máquinas supera qualquer coisa produzida por seres humanos: o mesmo artigo constatou que a eficiência do flagelo bacteriano “poderia ser próxima de 100%” [30].

Existem vários tipos de flagelos, mas todos usam certos componentes básicos. Um artigo na Nature Reviews Microbiology reconhece, “todos os flagelos bacterianos compartilham de um conjunto essencial de proteínas”, já que “três dispositivos modulares moleculares estão no cerne do flagelo bacteriano: o rotor-estator que energiza a rotação flagelar, o aparato quimiotáxico que gerencia as mudanças na direção do movimento, e do Sistema de Secreção Tipo 3 (T3SS) que gerencia a exportação dos componentes axiais do flagelo” [31]. Como isso pode sugerir, o flagelo é irredutivelmente complexo. Experimentos genéticos mostraram que ele não consegue se formar ou funcionar corretamente se qualquer um dos seus 35 genes estivesse faltando [32]. Neste jogo de tudo-ou-nada, as mutações não conseguem produzir a complexidade necessária para formar um motor flagelar rotativo e funcional em pequenos passos incrementais, e as chances são muito remotas para que ele se montasse em um grande salto. Na verdade, o artigo da Nature Reviews Microbiology mencionado acima admitiu que “a comunidade de pesquisa dos flagelos mal começou a ponderar sobre como esses sistemas evoluíram” [33].

No entanto, o flagelo é apenas um dos exemplos entre milhares de máquinas moleculares conhecidas na biologia. Um único projeto de pesquisa relatou a descoberta de mais de 250 novas máquinas moleculares apenas no fungo de fermento [34]. O ex-presidente da Academia Nacional de Ciências dos EUA (National Academy of Sciences, NAS), Bruce Alberts, escreveu um artigo na revista Cell elogiando a “velocidade”, “elegância”, “sofisticação” e a “atividade altamente organizada” dessas máquinas moleculares “notáveis” e “maravilhosas”. Ele explicou o que o inspirou nessas palavras: “Por que nós chamamos de máquinas proteicas os grandes grupos de proteínas que estão por trás da função celular? Precisamente porque, como máquinas inventadas pelo homem para lidar de forma eficiente com o mundo macroscópico, estes grupos de proteínas contêm peças móveis altamente coordenadas” [35]. Bioquímicos como Behe e outros acreditam que, com todas as suas peças coordenadas interagindo, muitas dessas máquinas não poderiam ter evoluído passo-a-passo ao modo darwiniano.

Mas não são só as máquinas com várias peças que estão fora do alcance da evolução darwiniana. Partes das próprias proteínas que constroem estas máquinas também exigiriam várias mutações simultâneas para que surgissem.

A pesquisa desafia o mecanismo darwiniano

Em 2000 e 2004, o especialista em proteínas Douglas Axe publicou uma pesquisa experimental no Journal of Molecular Biology sobre testes de sensibilidade mutacional que ele realizou com enzimas em bactérias [36]. Enzimas são cadeias longas de aminoácidos que se dobram em um formato tridimensional específico e estável para que possam funcionar. Os experimentos de sensibilidade mutacionais começam por fazer mutações das sequências de aminoácidos dessas proteínas, em seguida testando as proteínas mutantes para determinar se elas ainda podem se dobrar num formato estável e funcionar adequadamente. A pesquisa de Axe verificou que as sequências de aminoácidos que produzem arranjos proteicos estáveis e funcionais podem ser tão raras como na proporção de 1 em 1074 sequências, o que sugere que a maioria das sequências de aminoácidos não irão produzir proteínas estáveis e, portanto, não poderiam funcionar nos organismos vivos.

Em razão dessa raridade extrema de sequências de proteínas funcionais, seria muito difícil que mutações aleatórias tomassem uma proteína de um tipo de formato, e evoluíssem para um outro tipo sem passar por algum estágio não funcional. Em vez de evoluir através de “numerosas, sucessivas e ligeiras modificações”, muitas mudanças precisariam ocorrer simultaneamente para “encontrar” as sequências raras e improváveis de aminoácidos que produzissem proteínas funcionais. Colocando o tema em perspectiva, os resultados de Axe sugerem que as chances de processos darwinianos cegos e não controlados produzirem um formato funcional de proteína são menores do que as chances de alguém, com os olhos fechados, disparar uma flecha na Via Láctea e acertar um átomo pré-selecionado [37].

Proteínas interagem comumente com outras proteínas através de um encaixe tipo “mão na luva”, mas essas interações exigem frequentemente que muitos aminoácidos estejam “simplesmente corretos” antes que elas ocorram. Em 2004, Behe, juntamente com o físico da Universidade de Pittsburgh David Snoke, simulou a evolução darwiniana dessas interações proteína-proteína. Os cálculos de Behe e Snoke descobriram que, para organismos multicelulares, a evolução de uma simples interação proteína-proteína que necessitasse de duas ou mais mutações para funcionar provavelmente exigiria mais organismos e gerações do que os que estiveram disponíveis ao longo de toda a história da Terra. Eles concluíram que “o mecanismo de duplicação de genes e mutações pontuais por si mesmos seriam ineficazes… porque poucas espécies multicelulares alcançam os tamanhos populacionais necessários” [38].

Quatro anos depois, numa tentativa de refutar os argumentos de Behe, os biólogos Rick Durrett and Deena Schmidt acabaram confirmando a contragosto que ele estava basicamente correto. Depois de calcular a probabilidade de duas mutações simultâneas acontecendo por evolução darwiniana em uma população de seres humanos, eles descobriram que um evento como esse “levaria mais de 100 milhões de anos”. Tendo em vista que os humanos divergiram de seu suposto ancestral comum com os chimpanzés há apenas 6 milhões de anos, eles reconheceram que tais mutações são “muito pouco prováveis de acontecer em uma escala razoável de tempo” [39].

Agora, um defensor do darwinismo poderia dizer que estes cálculos mediram o poder do mecanismo darwiniano só entre organismos multicelulares, onde ele seria menos eficiente pois esses organismos mais complexos têm tamanhos menores de população e tempos maiores de geração do que organismos unicelulares procariontes, como bactérias. A evolução darwiniana, percebe o darwinista, poderia ter uma melhor chance quando operasse em organismos como as bactérias, que se reproduzem mais rápido e têm tamanhos de população muito maiores. Cientistas céticos da evolução darwiniana estão cientes dessa objeção, e descobriram que mesmo entre organismos que evoluem mais rapidamente como bactérias, a evolução darwiniana enfrenta grandes limitações.

Em 2010, Douglas Axe publicou comprovações indicando que, apesar das altas taxas de mutação e das generosas suposições que favoreciam um processo darwiniano, adaptações moleculares que exigissem mais de seis mutações antes de produzir qualquer vantagem seria extremamente improvável de surgir na história da Terra.

No ano seguinte, Axe publicou uma pesquisa com a bióloga do desenvolvimento Ann Gauger a respeito de experimentos para converter uma enzima bacteriana em outra enzima intimamente relacionada – o tipo de conversão que evolucionistas afirmam que poderia acontecer facilmente. Para este caso, eles descobriram que a conversão exigiria um mínimo de pelo menos sete mudanças simultâneas [40], que excede o limite de seis mutações que Axe tinha previamente estabelecido como limite do que é provável que a evolução darwiniana seja capaz de realizar em bactérias. Em razão de essa conversão ser considerada relativamente simples, a pesquisa sugere que as características biológicas mais complexas exigiriam mais de seis mutações simultâneas para dar alguma vantagem funcional nova.

Em outros experimentos conduzidos por Gauger e pelo biólogo Ralph Seelke da University of Wisconsin–Superior, os pesquisadores quebraram um gene na bactéria E. Coli necessário para sintetizar o aminoácido triptofano. Quando o genoma da bactéria foi quebrado em apenas um lugar, mutações aleatórias foram capazes de “consertar” o gene. Mas, mesmo quando apenas duas mutações eram necessárias para restaurar a função, a evolução darwiniana parecia ficar empacada, com incapacidade de recuperar a função completa [41].

Esses tipos de resultados sugerem consistentemente que as informações necessárias para que proteínas e enzimas funcionem são numerosas demais para serem produzidas por processos darwinianos em qualquer escala razoável de tempo evolutivo.

Céticos de Darwin abundam

Os doutores Axe, Gauger e Seelke não são de modo nenhum os únicos cientistas a observar a raridade das sequências de aminoácidos que produzem proteínas funcionais. Um proeminente livro-texto de biologia de nível universitário afirma que “mesmo uma pequena mudança na estrutura primária pode afetar a conformação e a capacidade de uma proteína de funcionar” [42]. De forma parecida, o biólogo evolucionista David S. Goodsell escreve:

Apenas uma pequena fração das possíveis combinações de aminoácidos dará forma espontaneamente a uma estrutura estável. Se você fizer uma proteína com uma sequência aleatória de aminoácidos, as chances são de que ela só irá formar um emaranhado pegajoso quando colocados em água [43].

Goodsell prossegue afirmando que “as células aperfeiçoaram as sequências de aminoácidos ao longo de muitos anos de seleção evolutiva”. Mas se sequências de proteínas funcionais são raras, então é provável que a seleção natural não seja capaz de transformar proteínas de uma seqüência genética funcional para outra sem ficarem presas em algum estágio intermediário mal adaptado ou não benéfico.

A falecida bióloga Lynn Margulis, uma membra muito respeitada da Academia Nacional de Ciências dos EUA (National Academy of Sciences, NAS) até a sua morte em 2011, disse uma vez “novas mutações não criam novas espécies; criam filhos que são debilitados” [44]. Ela ainda explicou em 2011 numa entrevista:

Os neo-darwinistas dizem que novas espécies surgem quando mutações ocorrem e modificam um organismo. Me ensinaram muitas e muitas vezes que a acumulação de mutações aleatórias levou à mudança evolutiva e a novas espécies. Eu acreditava nisso até procurar pelas evidências [45].

Similarmente, o ex-presidente da Academia de Ciências da França, Pierre-Paul Grasse, afirmou que “as mutações têm uma ‘capacidade construtiva’ muito limitada”, porque “não importa quão numerosas sejam, mutações não produzem qualquer tipo de evolução” [46].

Muitos outros cientistas se sentem assim. Mais de 800 cientistas com pós-doutorado assinaram uma declaração dizendo que “são céticos quanto a afirmações sobre a capacidade da mutação aleatória e da seleção natural para explicar a complexidade da vida” [47]. De fato, dois biólogos escreveram no Annual Review of Genomics and Human Genetics: “Continua a ser um mistério como o processo aleatório da mutação combinada com a seleção natural resultou na criação de milhares de novas proteínas com funções extraordinariamente diversas e bem otimizadas. Este problema é particularmente grave para os sistemas moleculares fortemente integrados que consistem em muitas partes interagindo” [48]. Talvez fosse menos misterioso se as concepções teóricas pudessem ser expandidas para além dos mecanismos evolutivos não controlados como mutações aleatórias e seleção natural para explicar a origem das características biológicas complexas.

Texto traduzido e adaptado de ENV.

Referências:

[24] Michael Behe, “Is There an ‘Edge’ to Evolution?”, aqui.

[25] Ibid.

[26] Michael Lynch, “Evolutionary layering and the limits to cellular perfection”, Proceedings of the U.S. National Academy of Sciences, disponível aqui.

[27] Jerry Coyne, “The Great Mutator (Review of The Edge of Evolution, de Michael Behe)”, The New Republic, pp. 38-44, 39 (18/06/2007).

[28] Charles Darwin, A Origem das Espécies (1859), capítulo 6, disponível aqui.

[29] David J. DeRosier, “The turn of the screw: The bacterial flagellar motor”, Cell, 93: 17-20 (1998).

[30] Ibid.

[31] Mark Pallen e Nicholas Matzke, “From The Origin of Species to the Origin of Bacterial Flagella”, Nature Reviews Microbiology, 4:788 (2006).

[32] Esses experimentos foram feitos em flagelos de E. coli e de S. typhimurium. Veja o transcrito do testemunho de Scott Minnich, pp. 103-112, Kitzmiller et al. v. Dover Area School Board, No. 4:04-CV-2688 (M.D. Pa., Nov. 3, 2005). Outros estudos experimentais identificaram mais de 30 proteínas necessárias para formar flagelos. Veja Tabela 1 em Robert M. Macnab, “Flagella”, em Escheria Coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol 1, pp. 73-74, Frederick C. Neidhart, John L. Ingraham, K. Brooks Low, Boris Magasanik, Moselio Schaechter, and H. Edwin Umbarger, eds., (Washington D.C.: American Society for Microbiology, 1987).

[33] Mark Pallen e Nicholas Matzke, “From The Origin of Species to the Origin of Bacterial Flagella”, Nature Reviews Microbiology, 4:788 (2006).

[34] “The Closest Look Ever at the Cell’s Machines”, ScienceDaily.com (24/01/2006), disponível aqui.

[35] Bruce Alberts, “The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists”, Cell, 92:291 (06/02/1998).

[36] Douglas A. Axe, “Estimating the Prevalence of Protein Sequences Adopting Functional Enzyme Folds”, Journal of Molecular Biology, 341: 1295-1315 (2004); Douglas A. Axe, “Extreme Functional Sensitivity to Conservative Amino Acid Changes on Enzyme Exteriors”, Journal of Molecular Biology, 301: 585-595 (2000).

[37] Stephen C. Meyer, Signature in the Cell: DNA and the Evidence for Intelligent Design, p. 211 (Harper One, 2009).

[38] Michael Behe e David Snoke, “Simulating Evolution by Gene Duplication of Protein Features That Require Multiple Amino Acid Residues”, Protein Science, 13: 2651-2664 (2004).

[39] Rick Durrett e Deena Schmidt, “Waiting for Two Mutations: With Applications to Regulatory Sequence Evolution and the Limits of Darwinian Evolution”, Genetics, 180:1501-1509 (2008). Para uma discussão mais detalhada, ver Ann Gauger, Douglas Axe, Casey Luskin, Science and Human Origins (Discovery Institute Press, 2012).

[40] Ann Gauger e Douglas Axe, “The Evolutionary Accessibility of New Enzyme Functions: A Case Study from the Biotin Pathway”, BIO-Complexity, 2011 (1): 1-17.

[41] Ann Gauger, Stephanie Ebnet, Pamela F. Fahey, e Ralph Seelke, “Reductive Evolution Can Prevent Populations from Taking Simple Adaptive Paths to High Fitness”, BIO-Complexity, 2010 (2): 1-9.

[42] Neil A. Campbell e Jane B. Reece, Biology, p. 84 (7th ed., 2005).

[43] David S. Goodsell, The Machinery of Life, pp. 17, 19 (2nd ed., Springer, 2009).

[44] Lynn Margulis, citada em Darry Madden, UMass Scientist to Lead Debate on Evolutionary Theory, Brattleboro (Vt.) Reformer (03/02/2006).

[45] Lynn Margulis citada em “Lynn Margulis: Q + A”, Discover Magazine, p. 68 (abril de 2011).

[46] Pierre-Paul Grassé, Evolution of Living Organisms: Evidence for a New Theory of Transformation (Academic Press: New York NY, 1977).

[47] “A Scientific Dissent from Darwinism”, aqui.

[48] Joseph W. Thornton e Rob DeSalle, “Gene Family Evolution and Homology: Genomics Meets Phylogenetics”, Annual Review of Genomics and Human Genetics, 1:41-73 (2000).

Como sabemos que o Design Inteligente é uma teoria científica?

Uma pergunta que eu sempre recebo é se o Design Inteligente pode ser classificado como uma “teoria científica”. A palavra “teoria” é usada tantas vezes como se todos estivessem de acordo com o seu significado. Para responder essa pergunta, em primeiro lugar, devemos considerar o significado da palavra “teoria”.

O filósofo Peter Kosso explica que chamar alguma idéia de “teoria” diz muito pouco sobre o grau de certeza na qual a idéia se apoia. Como ele afirma, “nem lei e nem teoria” tratam sobre algo verdadeiro ou falso ou sobre algo ser bem testado ou especulativo. Na visão de Kosso, uma teoria “descreve aspectos da natureza que estão além do que podemos observar e descreve aspectos que podem ser usados para explicar o que podemos observar”. Assim, “algumas teorias são verdadeiras (teoria atômica) enquanto algumas são falsas (teoria calórica), e o método científico é o que nos direciona para decidir qual é qual”.

A Teoria do Design Inteligente (TDI) se encaixa nessa definição de teoria? Sim, ela se encaixa. A TDI é uma teoria de detecção de design, nos permitindo explicar como determinados aspectos de complexidade biológica e outras complexidades naturais surgiram. Por isso, usa o método cientifico para fazer suas afirmações.

O método científico é comumente descrito como um processo de quatro etapas que envolvem observação, hipótese, experimentos e conclusão. A TDI começa com a observação de que agentes inteligentes produzem Informação Complexa e Específica (ICE). Os teóricos do Design Inteligente (chamados de inteligentistas) levantam a hipótese de que, se um objeto natural foi concebido, este irá conter altos níveis de ICE. Os cientistas, em seguida, realizam testes experimentais sobre os objetos naturais para determinar se eles contêm informações complexas e específicas. Uma maneira fácil para testar a ICE é a Complexidade Irredutível, que pode ser testada por Engenharia Reversa em estruturas biológicas através de experimentos genéticos para determinar se eles exigem todas as suas peças para funcionar. Quando os cientistas desvendam experimentalmente a Complexidade Irredutível em uma estrutura biológica, eles concluem que ela foi projetada.

Conhecendo a definição de “teoria” dos mais eminentes criticos do DI

Embora Peter Kosso possa discordar, acredita-se que a TDI se enquadra em sua definição de “teoria”. Mas como foi sugerido acima, existem muitas definições de “teoria” por aí. Como podemos saber se a TDI é uma teoria científica? Tome a definição de “teoria” fornecida pelos críticos científicos mais eminentes da TDI e se ela satisfizer a definição, então há uma boa chance da TDI ser considerada devidamente como uma teoria científica.

Provavelmente os opositores científicos mais eminentes da Teoria do Design Inteligente possam ser encontrados entre os membros da Academia Nacional de Ciências dos EUA (National Academy of Sciences, NAS). Diferentemente de Peter Kosso, a NAS define “teoria” como uma ideia que está bem testada e bem suportada pelas evidências científicas:

  • “uma explicação bem fundamentada de algum aspecto do mundo natural que pode incorporar fatos, leis e hipóteses testadas” (Science & Creationism: A View from the National Academy of Sciences, National Academy Press, 1999);
  • “uma explicação detalhada de alguns aspectos da natureza, que é apoiada por um vasto conjunto de evidências” (Science, Evolution & Creationism, National Academy Press, 2008).

Mesmo que aceitemos a definição mais rigorosa da NAS sobre teoria, a TDI é mais do que qualificada.

Quando somos confrontados com testes múltiplos, é melhor dividi-lo em etapas. Se preenchemos todas as “etapas”, então somos aprovados no teste. Vamos usar esse método aqui para analisar se a TDI é uma teoria:

  1. A TDI deve fornecer “uma explicação de algum aspecto do mundo natural” e uma “explicação detalhada de alguns aspectos da natureza”;
  2. A TDI deve “incorporar muitos fatos, leis e hipóteses testadas”;
  3. A TDI deve ser “bem fundamentada” e “apoiada por um vasto conjunto de evidências”.

Etapa 1: A TDI deve fornecer “uma explicação de algum aspecto do mundo natural” e uma “explicação detalhada de alguns aspectos da natureza”.

A TDI não é apenas uma explicação de “algum aspecto do mundo natural”: na verdade ele explica muitos aspectos do mundo natural. Se apenas pensarmos em termos de grandes categorias, a TDI propõe que a causa inteligente é a melhor explicação para os eventos históricos, como:

  • A origem do ajuste fino do universo para a vida complexa;
  • A origem dos níveis extremamente altos de Informação Complexa e Especificada no DNA;
  • A origem de sistemas integrados necessários para o arranjo fisiológico dos animais;
  • A origem de muitos sistemas de Complexidade Irredutível encontrada em organismos vivos.

Assim a TDI realiza essa etapa: é uma explicação de muitos aspectos do mundo natural, sobretudo muitos aspectos da complexidade biológica.

Etapa 2: A TDI deve “incorporar muitos fatos, leis e hipóteses testadas”.

A TDI realiza facilmente essa etapa. Ela incorpora muitos fatos, leis e hipóteses testadas, incluindo:

  • As leis e constantes do universo conhecido e os coloca juntas em uma teoria unificada, para explicar porquê elas estão ajustadas para produzir parâmetros físicos favoráveis à vida;
  • Muitos fatos conhecidos sobre o sequenciamento do DNA, bem como as hipóteses testadas de que eles estão bem ajustados para executar funções biológicas;
  • Uma infinidade de hipóteses testadas sobre o abrupto aparecimento geológico de novos filos no registro fóssil, bem como numerosos fatos da bioquímica e biologia dos animais sobre o tipo e quantidade de informação integrada necessária para coordenar novos tipos de proteínas, tipos de células, tecidos e órgãos em novos arranjos fisiológicos funcionais;
  • Muitas hipóteses testadas sobre a presença de complexidade irredutível em sistemas biológicos, evidenciados por experimentos genéticos que têm mostrado que a Complexidade Irredutível é um fenômeno real;
  • A proposição de novas leis, como a Lei da Conservação da Informação, novos princípios sobre as causas de altos níveis ICE, novos métodos para medição de complexidade e informações funcionais, e novas hipóteses sobre a ubiquidade do ajuste fino em muitos aspectos da cosmologia e biologia.

Etapa 3: A TDI deve ser “bem fundamentada” e “apoiada por um vasto conjunto de evidências”.

Essa etapa é única, porque ela coloca “teoria” nos olhos de quem vê. Se você acha que a TDI está correta (ou seja, “bem fundamentada”), então ela vai se qualificar como uma teoria científica. Se você não acha que está correta, então você vai pensar que não é bem fundamentada e a TDI não será qualificada como uma teoria. Na prática, esta etapa mede questões subjetivas sobre o que as pessoas acreditam a respeito de uma idéia, ao invés de fazer perguntas objetivas sobre a natureza básica da idéia que está sendo proposta. É provavelmente em razão disso que pensadores cuidadosos como Peter Kosso excluem expressamente essa etapa de sua definição de “teoria”.

No entanto, a TDI também cumpre os critérios da NAS, e um vasto conjunto de evidências pode ser apresentado para defender a teoria. A TDI está bem fundamentada porque um número significativo de estudos confirmaram as previsões da teoria, tais como:

  • A física e a cosmologia continuam a descobrir níveis cada vez mais elevados de ajuste fino. Muitos exemplos podem ser citados, mas este é impressionante: a entropia inicial do universo precisou ter sido ajustada na proporção de 1 parte em 1010123 para que o universo fosse favorável a vida. Com uma diferença mínima nesse ajuste, não seria possível a vida no Universo. Novas teorias cosmológicas, como a Teoria das Cordas ou a Teoria do Multiverso apenas servem para barrar as perguntas sobre o ajuste fino, e acabam aumentando a necessidade desse ajuste;
  • Testes de sensibilidade mutacional mostram cada vez mais que as sequências de DNA são altamente ajustadas para gerar proteínas funcionais e executar outras funções biológicas;
  • Estudos da epigenética e da biologia de sistemas estão revelando mais e mais como os organismos são integrados (cibernética), da bioquímica até a macrobiologia, e mostrando funções celulares básicas incrivelmente bem ajustadas;
  • Experimentos genéticos demonstram Complexidade Irredutível, como no flagelo bacteriano, ou nas características de multimutação onde seriam necessárias várias mutações simultâneas para ganhar uma vantagem. Isto é mais ajuste fino.

A TDI é fundamentada por um vasto conjunto de provas que vão desde a física à cosmologia, da bioquímica à biologia animal, da biologia de sistemas e a epigenética à paleontologia. A TDI ultrapassa em muito as exigências definidas pela NAS sobre o que é uma “teoria”.

Texto traduzido e adaptado de Evolution News & Views.

Problema 1: Não existe um mecanismo viável para gerar uma sopa primordial

Concepção artística do planeta Terra primitivo

Concepção artística do planeta Terra primitivo. Imagem: http://spaceart1.ning.com/photo/early-earth-1

Nota do tradutor: esta é a parte 1 da série de 10 artigos sobre os problemas científicos da evolução biológica e química. A série é baseada no capítulo “The Top Ten Scientific Problems with Biological and Chemical Evolution” de autoria de Casey Luskin no livro More than Myth, editado por Paul Brown e Robert Stackpole (Chartwell Press, 2014). Eis a lista de todos os artigos: Artigo introdutório, Problema 1, Problema 2, Problema 3, Problema 4, Problema 5, Problema 6, Problema 7, Problema 8, Problema 9, Problema 10.


De acordo com o pensamento convencional entre teóricos da origem da vida, a vida surgiu na Terra primitiva por meio de reações químicas desgovernadas por volta de 3 a 4 bilhões de anos atrás. A maioria dos teóricos acreditam que havia muitas etapas envolvidas na origem da vida, mas a primeira etapa teria envolvido a produção de uma sopa primordial — um mar à base de água e moléculas orgânicas simples — do qual a vida teria surgido. Embora a existência desta “sopa” tenha sido aceita como fato inquestionável durante décadas, esta primeira etapa na maioria das teorias da origem da vida enfrenta inúmeras dificuldades científicas.

Em 1953, um estudante de pós-graduação na Universidade de Chicago chamado Stanley Miller, junto com seu orientador acadêmico Harold Urey, realizaram experimentos com a esperança de produzir os blocos de construção da vida em condições naturais na Terra primitiva [4]. Esses “experimentos de Miller-Urey” pretendiam simular raios atingindo os gases na atmosfera da Terra primitiva. Depois de executar os experimentos e deixar os produtos químicos se estabilizarem por um período de tempo, Miller descobriu que os aminoácidos — os blocos de construção das proteínas — tinham sido produzidos.

Durante décadas, esses experimentos têm sido aclamados como uma demonstração de que os “blocos de construção” da vida poderiam ter surgido sob condições naturais e realistas, semelhantes à Terra [5], corroborando a hipótese de sopa primordial. No entanto, também tem ficado conhecido há décadas que a atmosfera primitiva da Terra era fundamentalmente diferente daquela dos gases usados por Miller e Urey.

A atmosfera utilizada nas experiências de Miller-Urey era composta principalmente por gases redutores, como metano, amônia, e níveis elevados de gás hidrogênio. Geoquímicos hoje acreditam que a atmosfera da Terra primitiva não continha quantidades consideráveis desses gases. Gases redutores são aqueles que tendem a doar elétrons durante as reações químicas. O teórico de origem da vida da UC Santa Cruz, David Deamer, explica isso na revista Microbiology & Molecular Biology:

Este quadro otimista começou a mudar no final da década de 1970, quando se tornou cada vez mais claro que a atmosfera primitiva era, provavelmente, de origem e composição vulcânicas, composta em grande parte por dióxido de carbono e nitrogênio, ao invés da mistura de gases redutores assumidas pelo modelo de Miller-Urey. O dióxido de carbono não suporta a rica variedade de caminhos sintéticos que levam a possíveis monômeros…[6]

Da maneira semelhante, um artigo na revista Science declarou: “Miller e Urey contaram com uma atmosfera “redutora”, uma condição na qual as moléculas estariam cheias de átomos de hidrogênio. Como Miller mostrou mais tarde, ele não poderia sintetizar moléculas orgânicas em uma atmosfera “oxidante” [7]. O artigo diz sem rodeios: “a atmosfera primitiva não se parecia em nada com as condições de Miller-Urey” [8]. Coerentemente a isso, estudos geológicos não descobriram evidências de que uma sopa primordial teria existido em algum momento [9].

Há boas razões para entender porque a atmosfera primitiva da Terra não continha altas concentrações de metano, amônia ou outros gases redutores. A atmosfera primitiva da Terra é considerada como se tivesse sido produzida pela saída de gás dos vulcões, e a composição desses gases vulcânicos está relacionada com as propriedades químicas do manto no interior da Terra. Estudos geoquímicos descobriram que essas propriedades químicas teria sido as mesmas do passado, como elas são hoje [10]. Mas hoje, gases vulcânicos não contêm metano ou amônia, e não estão reduzindo.

Um artigo na Earth and Planetary Science Letters descobriu que as propriedades químicas do interior da Terra tinham sido essencialmente constantes ao longo da história do planeta, levando à conclusão de que “a vida pode ter encontrado as suas origens em outros ambientes ou por outros mecanismos” [11]. As evidências contra a síntese pré-biótica de blocos de construção da vida são tão fortes, que em 1990, a Diretoria de Estudos Espaciais do Conselho Nacional de Pesquisa dos EUA recomendou que os investigadores da origem da vida se encarregassem de “reexaminar a síntese biológica de monômeros nos ambientes da Terra primitiva, como mostrada em modelos atuais da Terra antiga” [12].

Devido a estas dificuldades, alguns dos principais teóricos abandonaram o experimento de Miller-Urey e a teoria da “sopa primordial” que pretendia apoia-lo. Em 2010, o bioquímico Nick Lane da University College London declarou a teoria sopa primordial “não se sustenta” e que “já é passada a sua data de validade” [13]. Em vez disso, ele propõe que a vida teria surgido em fontes hidrotermais submarinas.

Mas ambas as hipóteses da fonte hidrotermal e a da sopa primordial enfrentam outro grande problema.

A evolução química na água está morta

Suponha por um instante que houvesse alguma maneira de produzir moléculas orgânicas simples na Terra primitiva. Possivelmente elas formaram uma “sopa primordial”, ou, talvez essas moléculas se originaram próxima a alguma fonte hidrotermal. De qualquer maneira, os teóricos da origem da vida deveriam explicar como aminoácidos ou outras moléculas orgânicas essenciais se juntaram para formar longas cadeias (polímeros), como proteínas ou RNA.

No entanto, quimicamente falando, o último lugar em que você gostaria de juntar aminoácidos em cadeias seria num grande ambiente cheio de água como a “sopa primordial”, ou perto de uma fonte hidrotermal. Como a Academia Nacional de Ciências dos EUA reconheceu, “dois aminoácidos não se juntam espontaneamente na água. Em vez disso, a reação oposta é termodinamicamente favorecida” [14]. Em outras palavras, a água quebra as cadeias proteicas de volta em aminoácidos (ou outros componentes), tornando muito difícil a produção de proteínas (ou outros polímeros) na sopa primordial.

Os materialistas não tem boas explicações para estas primeiras etapas simples que são necessárias para a origem da vida. A evolução química na água está literalmente morta.

Texto traduzido e adaptado de ENV.

Referências:

[4] Stanley L. Miller, “A Production of Amino Acids under Possible Primitive Earth Conditions”, Science, 117: 528-529 (15/05/1953).

[5] Jonathan Wells, Icons of Evolution: Why Much of What We Teach About Evolution Is Wrong (Washington D.C.: Regnery, 2000);
Casey Luskin, “Not Making the Grade: An Evaluation of 19 Recent Biology Textbooks and Their Use of Selected Icons of Evolution”, em DiscoveryInstitute_2011TextbookReview.pdf (26/10/2011).

[6] David W. Deamer, “The First Living Systems: a Bioenergetic Perspective”, Microbiology & Molecular Biology Reviews, 61:239 (1997).

[7] Jon Cohen, “Novel Center Seeks to Add Spark to Origins of Life”, Science, 270: 1925-1926 (22/12/1995).

[8] Ibid.

[9] Antonio C. Lasaga, H. D. Holland e Michael J. Dwyer, “Primordial Oil Slick”, Science, 174: 53-55 (1/10/1971).

[10] Kevin Zahnle, Laura Schaefer e Bruce Fegley, “Earth’s Earliest Atmospheres”, Cold Spring Harbor Perspectives in Biology, 2(10): a004895 (10/2010) (“Geochemical evidence in Earth’s oldest igneous rocks indicates that the redox state of the Earth’s mantle has not changed over the past 3.8 Gyr”);
Dante Canil, “Vanadian in peridotites, mantle redox and tectonic environments: Archean to present”, Earth and Planetary Science Letters, 195:75-90 (2002).

[11] Dante Canil, “Vanadian in peridotites, mantle redox and tectonic environments: Archean to present”, Earth and Planetary Science Letters, 195:75-90 (2002) (citações internas omitidas).

[12] National Research Council Space Studies Board, The Search for Life’s Origins (National Academy Press, 1990).

[13] Deborah Kelley, “Is It Time To Throw Out ‘Primordial Soup’ Theory?”, NPR (7 de fevereiro de 2010).

[14] Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council, The Limits of Organic Life in Planetary Systems, p. 60 (Washington D.C.: National Academy Press, 2007).